Kazova ve Nıksar Ovasında Yer Alan Yeşilırmak ve Kelkit Çayı Teras
Topraklarının Toprak Gelişim Oranları

Kenan KILIÇ, Alper DURAK
Gaziosmanpaşa Üniversitesi, Ziraat Fakültesi, Toprak Bölümü, Tokat-TÜRKİYE

Kazova ve Nıksar ovasındaki iki chronosequence'de yürütülen bu çalışmada Toprak Gelişim Oranları zamanla artmıştır.
Ancak bu oran B horozon olup, bu kısım da, toprak oluşumunun özellikleri, toprak gelişim hızını, logaritmik veya exponentel yapıda göstermektedir. Toprakların çok genç olduklarından toprak gelişim hızı, yeryüzün yaklaşık 50 cm, içinde meydana gelmiştir. Ancak genelinde toprakların olduğu profildeki gelişim, yeryüz tootha Stateless olarak fazla.
Hem in iki çalışma alanında, örnek veriteler, morfoloji, toprak oluşumunun olduğu ve bu toprakların oluşumunda, vücuttan, canlı malzeme ve toprak miyozanların aynı olması rağmen, Yeşilırmak teras topraklarının toprak gelişim oranları, Kelkit çayı teras topraklarına göre daha yüksek bulunmuştur. Çalışma alanlarının toprak gelişim oranlarının toprak oluş faktörlerinden çok, taban suyu seviyesi, orman, madde ve kiler miktari gibi toprak özelliklerine bağlı olduğu görülmektedir.

Rates of Soil Development of Yeşilırmak and Kelkit River Terrace Soils in Kazova and Tokat Basins

Abstract: The objective of this study was to determine the rates of soil development in Yeşilırmak and Kelkit river terraces. The rates of soil development were determined by using a soil development index, combining eight soil properties, and designed by Harden (1982). Of the eight properties used by index, the clay films have not been used to calculate soil development index and also was not detected in both areas.

In this study applied to the two chronosequence in Kazova and Nıksar basin, the rates of soil development increased with time. However, this rate was enough to form a B horizon. In both areas, the development of soil properties was increased or decreased linearly, logaritmically or exponentially functions. Since the soils are very young the soil development occurred approximately at 50 cm below the surface. But, the soil development of the buried soil profiles was greater than surface soil.

Although, both areas have the same climate, vegetation, parent material and topography, the rates of soil development in Yeşilırmak river terraces was found to be higher than that in Kelkit river terraces. The soil development rates in the study areas were affected by the soil properties such as level of ground water, organic matter content and amount of clay more than the factors of soil formation.

Giriş

Uzun yıllardan beri agronomistler ve arazi değerlendirmeciler, toprakların türün ayırt ediciliğini de değerlendirmek için Storie indeksi (1) ve arazi yetenek sınıflamasını (2) kullanmaktadır. Buna benzer olarak pedologlar ve jeologlar, toprakların oluşumunu kategorit etmek, toprak gelişim seviyesini belirlemek için bir indeke göre hesaplamalarını içerir. İşe topografı olarak, bu yorum getirilebilir bir yorum gelişim indeksi olarak Harden (3) tarafından yani bir toprak gelişim indeksini geliştirilmiştir. Bu indeks ile toprak gelişim değerlerini belirlemeleri ve toprak alanları belirli arazi özelliklerinden yararlanarak kolayca belirlenebilir ve kategorit karsılaştırmalar zaman içerisinde değişen toprak rengi, kil filmleri, tekstür, stoküstr ve diğer özelliklerle kolaylıkla yapılabilektedir.

Ana material, profil içerisinde ayırt etmek, toprak çesitleri ve toprak arasındakı farklılıkların toprak oluş faktörleri tarafından oluşturulduğu düşünülürse de, toprak çesiti ve çevre koşulları arasındaki ilişki tek başına toprak oluşunun mekanizmasına açıklama yeteri değildir. Çünkü, Toprağın oluşması ve karakter kazanmış profilde aktif rol oynayan fiziksel, kimyasal ve biyolojik olayların değer değişik alanlardaki etkiye etki ve etki derecelerine bağlıdır (4). Ana materialden kaynaklanan toprak özelliklerini belirlemek için toprak morfolojisinin arazi tanımlamalarına dayanan toprak gelişim derecesi kullanılabılır (5). Toprak morfolojisini toprak gelişim indeksleri ile açıklanabilir (3). Toprak gelişim indeksleri ise ana material ve toprak arazi morfolojisini, özellikle farklılıklar ortaya koyar. Toprak gelişim indeksi, ana materialdeki değişimi belirleyerek, ana materialin litolojisinin (toprak oluşumundaki) etkisini azaltır ve farklı yerlerde oluşmuş toprakların dizilim, karsılaştırmaya ve genel ilişkileri için kullanılabılır (6).

Toprak profil gelişim derecesini kategorit olarak belirlmek için bir toprak gelişim indeksi geliştirilmişdir (3). Toprak kategorisi ile 8 toprak morfolojisinin kombinasyonu olan bu indeks Yeşilırmak ve Kelkit çayı chronosequence'lerinin morfolojis tanımlamalarından düzelenmiştir. Ancak, 8 topograf morfolojisini içeren indeksteki bir özelliğin çalışma alanında görünmemesinden dolayı, bu çalışmada sadece 7 toprak morfolojisini kullanılmıştır. Bu 7 özellik (rubifişasyon, renk-hue ve chroma), melanizasyon (renk-value), tekstür ve yaş kvm, stoküstr, kuru kvm, nemli kvm ve pH'dır.

Bu araştırmda, arazi tanımlanmış morfolojis, özellikle ve laboratuvarında yapılan bazı analizleri bağı olarak toprak gelişim indeksini hesaplamış, kategorit olarak belirlenen özellikler toprak derinliği ve teraslar arasında karsılaştırmıştır. Bu çalışmada terasların seçilmiş nedeni, 1. Aluvial malzemelelerden oluşan toprakların, oluşmuş ve gelişimi konusuna oldukça zor ve kompleks olması ve 2. Terasların kronolojik bir düzlemi göstermemeleridir. Bu araştırmayı anlasmak, Kazova ve Nıksar ovalarında Yeşilırmak ve Kelkit çayı teraslarında oluşumlu sekillerdaki toprak gelişim oranlarının belirlenmesidir.

Materyal ve Metod

Materyal
 Çalışma Kazova (220 km2) ve Nıksar ovasında (150 km2) yaygın olarak bulunan ve Toprak Taksonomisine göre Üstüfluent (7) olarak sınıflandırılan (*) Bu Makale Doktora Tezinden Hazırlanmıştır.
büyük toprak grubu üzerinde yürütülmiştir.

Çalışma alanında Yeşilirmak ve Kelkit çayının oluştuğu teraslarında 1/25,000 ölçekli topografik, 1/500,000 ölçekli jeolojik (8) ve 1/800,000 ölçekli Toprak Taksonomisine göre hazırlanan toprak haritası (7) kullanılanlar teras yerleri belirlenmiştir. Arındı genel-bati ve kuzey-doğu bakıslarla her bir teras üzerinde 3 veya 4 profil çuku açılmıştır. Kelkit çayının oluştuğu teraslar üzerinde 21, Yeşil irmakın oluştuğu teraslar üzerinde 10 profil çuku olmak üzere toplam 31 profil çuku açılması ve horizont esasına göre tanımlanan profilärden toplam 155 toprak örnek alınarak materyal olarak kullanılmıştır.

Metod

Toprak Gelişim İndeksleri

Bu çalışmada toprak gelişim indekslerinin hesaplanmasında Harden (3) ve Harden ve Taylor (6) tarafından tanımlanan esaslar gözlemlenmiştir. Toprak özelliklerini belirlemek ve indekslerin nasıl hesaplandığı göstermek için Yeşilirmak teraslarında bulunan 9. Profil örnek olarak verilmiştir (Tablo 1, 2).

İndeksin hesaplanmasında her toprak özelliğinin (Rubifikasyon, melanizasyon, toplam tekstür, struktur, kuru kıvam, nemli kıvam ve pH) kaliteli tanımları yapılır ve kodlanır. Ana materyal ve toprak arasındaki her bir farklılık için 10 puan değerlendirmesi ve farklılık sayısallaştırılır. Sayısal değerler tekisel maliyemik değerlere bölünür ve 0-1 arasında olan bir ölçekte artarak normalize edilir. Her bir horizon için normalize edilen özellikler toplanarak toplam normalize edilmiş özellikler bulundukunun sonar, toprak gelişim indeksinin hesaplanmasında kullanılan özelliklerin sayısı bölmüner "Horizon Indeksi" belirler. Horizon indeksi, horizon kalınığı ile çaplı ve çaplı değerlere "Profil Özellikleri" bulmak için toplanır. Her bir horizondan elde edilen değerlere, her profil için ayrı ayrı toplanarak "Profil Gelişim İndexi" elde edilir. Ayrıca zaman bu şekilde özelliklerin ayrı ayrı gelişimi her profilde değerlendirilir (3, 6).

Bu çalışmada, sayısallaştırılmış özellikler olarak kabal edilen toplam tekstür. Harden (3)'in teoriksel maliyemlik bulunan oldukça yüksek. Toplam tekstür genelde meydan geri "90" değerinden yüksek olduğundan Busacca (9)'ın "120" teoriksel maliyemlik değerini kullanılır. Bununla beraber "Toprak Gelişim İndeksi" Birkeland ve ark. (5)'in önerdiği şekilde Harden (3)'in teoriksel maliyemlikleri kullanarak hesaplanmıştır.

İstatistik Analizler: Regresyon analizleri Davis (10)'a göre yapılmış ve kronolojik dizili bir belirlemek için "Toprak Gelişim İndeksin" uygulanmıştır. Toprak gelişim indeksleri Taylor (11) tarafından geliştirilen bir Lotus modeli yardımıyla hesaplanmıştır.

Toprak Özelliklerinin Sayısal Araştırılması

Herhangi bir toprak özellikinin sayısallaştırılmasında kullanılan "puanlar", horizon ve onun ana materyali (C horizontu) arasındaki farklılık derecerini gösterir. Özelliklerin katılayıcı belli olmaması için farklı puan değerleri denenmiştir. Farklı puan sistemleri denenmeleri nedeni, toprak yakı ve derinliği ile özelliklerdeki bazı sistematik değişimin göstermemesidir.

Toprak gelişim indeksinin hesapında kuru ve nemli kıvam olmak üzere iki kıvam çeşitli kullanılmaktadır. Soil Survey Staff (14)'e göre kuru ve nemli kıvam altı sınıfa ayrılmıştır. Kuru kıvam da, derinlamaya son derece derecu olmamak, nemli kıvam da derin ve çok derin toplamda toplam 100 kıvam değerleri verilimbilmektedir. 9. profil ana materyalı kuru iken derin, nemli iken derinden 'ür. Ap horizontu kuru iken çok serifi ve nemli iken çok siki bir kıvamı sahip olduğundan, kuru kıvamda 40, nemli kıvamda da 40 puan değeri almakta (Tablo 1).

Tablo 1. Toprak özelliklerinin sayısal analiz ve normalizasyonu

<table>
<thead>
<tr>
<th>Ruhifikasyon</th>
<th>Horizon Ana Materyal Özellikleri Normalizasyonu</th>
<th>Sayısal analizde kullanılan özelliklerin normalizasyonu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hue → 10Y 7.5Y 5Y 2.5Y 10YR 7.5YR SYR</td>
<td>10 YR 5/3k 10 YR 4/3n 5 YR 4/1n</td>
<td>Maksimum değere bölümü</td>
</tr>
<tr>
<td>Puanlar → 0 10 20 30 40 50</td>
<td>Xr = (0-40) + (10-20) kuru + (20-40) nemli</td>
<td>Xm = Xr/Xmax = Xr/190 = 0.47</td>
</tr>
<tr>
<td>Chroma → 1 2 3 4 5 6 7 8 9</td>
<td>50+40 = 90</td>
<td></td>
</tr>
<tr>
<td>Puanlar → 0 10 20 30 40 50</td>
<td>Xmax = Xm = (50-40) + (30-30) = 10</td>
<td>Maksimum değere bölümü</td>
</tr>
<tr>
<td>Xmax = (Value Xo) kuru + (Value Xo) nemli</td>
<td>Xm = Xmin = Xm/30 = 10/70 = 0.14</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Melanizasyon</th>
<th>Tekstür</th>
<th>Total Tekstür</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value → 1 2 3 4 5 6 7 8 9</td>
<td>Tekstür tekstür ucuzgunde kundam ile</td>
<td>SİCL SİL</td>
</tr>
<tr>
<td>Puanlar → 0 10 20 30 40 50 60 70 80</td>
<td>doğru her bir artış için 10 puan verilir.</td>
<td>Maksimum değere bölümü</td>
</tr>
<tr>
<td>Xr = (Tekstür Xo) + (Yapışkanlık Xo) + (Plastiklik Xo)</td>
<td>Yapılaşkanlık → yd az y çp</td>
<td>Xmin = Xmax = 70/120</td>
</tr>
<tr>
<td></td>
<td>0 1 2 3</td>
<td>= X90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Basaçka (1987)’nin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>max. Değeri kullanıldı)</td>
</tr>
<tr>
<td></td>
<td>Plastiklik → pd ap p çp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1 2 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strüktür</th>
<th>2 gr m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puanlar</td>
<td>0 10 20 30</td>
</tr>
<tr>
<td>Derece m</td>
<td>1 2 3</td>
</tr>
<tr>
<td>Tip</td>
<td>gr ykb, bj Pr kl</td>
</tr>
<tr>
<td>Xs = (Derece + Tip) Primer str. + (Derece + Tip) Sekonder str.</td>
<td>Xs = 20+10 = 30</td>
</tr>
<tr>
<td></td>
<td>Xs = Xs/Xmax = Xs/60 = 0.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kuru Kivam</th>
<th>Nemli Kivam</th>
<th>Kuru kivam çs d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smf → d y hs s çs sds</td>
<td>Smf → d çg çg çs çs sds</td>
<td>Xkk = 10.4</td>
</tr>
<tr>
<td>puanlar → 0 10 20 30 40 50</td>
<td>Puanlar → 0 10 20 30 40</td>
<td>Xkk = 40</td>
</tr>
<tr>
<td>Xkk = (Kuru Kivam Xo)</td>
<td>Xkk = 10.4</td>
<td></td>
</tr>
<tr>
<td>Nemli Kivam</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>Smf → d çg çg çs çs sds</td>
<td>Xnk = 10.4</td>
<td></td>
</tr>
<tr>
<td>Xnk = (Nemli Kivam Xo)</td>
<td>Xnk = 10.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xnk = 40</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.92 7.88</td>
<td>XpH = XpH(Xo)max = 0.04/3.5</td>
</tr>
<tr>
<td>Ana materyal ve horizon arasındaki farklilik alını.</td>
<td>XpH = pH + (pH Xo) max = 0.04</td>
<td></td>
</tr>
<tr>
<td>XpH = pH Xo</td>
<td>XpH = 0.04/3.5</td>
<td>Maksimum değere bölümü</td>
</tr>
<tr>
<td></td>
<td>= 0.04</td>
<td></td>
</tr>
</tbody>
</table>

Kuzova ve Niksar Ovasındaki Yer Alan Yıklılık ve Keklik Çayı Teras Topraklarının

127
Tablo 2. Normalize edilmiş özelliklerin profil özelliği, ağırlık profil özelliği, horizont, profil ve ağırlık profil gelişim indekslerinin bulunması

<table>
<thead>
<tr>
<th>Horizont</th>
<th>Kalınlık (cm)</th>
<th>Rubifikasyon x Profil</th>
<th>Melanizasyon x Profil</th>
<th>Total Tekstür x Profil</th>
<th>Strüktür x Profil</th>
<th>Kuru Kivam x Profil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ap</td>
<td>20</td>
<td>0.47</td>
<td>9.40</td>
<td>9.40</td>
<td>0.14</td>
<td>2.80</td>
</tr>
<tr>
<td>A</td>
<td>13</td>
<td>0.42</td>
<td>6.30</td>
<td>15.7</td>
<td>0.14</td>
<td>2.10</td>
</tr>
<tr>
<td>A3</td>
<td>44</td>
<td>0.47</td>
<td>20.7</td>
<td>36.4</td>
<td>0.14</td>
<td>6.16</td>
</tr>
<tr>
<td>AC</td>
<td>29</td>
<td>0.42</td>
<td>12.2</td>
<td>48.6</td>
<td>0.29</td>
<td>8.41</td>
</tr>
<tr>
<td>C1</td>
<td>42</td>
<td>0.47</td>
<td>19.8</td>
<td>68.4</td>
<td>0.14</td>
<td>5.88</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>WPR = 0.46</td>
<td></td>
<td>WPM = 0.17</td>
<td></td>
<td>WPT = 0.67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nemli Kivam x Profil</th>
<th>pH x Profil</th>
<th>Toplam Normalizasyon</th>
<th>Özellik Sayısı</th>
<th>Horizon İndeksi (Index-cm)</th>
<th>x Kalınlık</th>
<th>Profil İndeksi (Index-cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nemli Kivam</td>
<td>Norm. Kalın. N.K.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td>8.00</td>
<td>8.00</td>
<td>0.01</td>
<td>0.20</td>
<td>0.20</td>
<td>2.50</td>
</tr>
<tr>
<td>0.40</td>
<td>6.00</td>
<td>14.0</td>
<td>0.01</td>
<td>0.15</td>
<td>0.35</td>
<td>3.05</td>
</tr>
<tr>
<td>0.30</td>
<td>13.2</td>
<td>27.2</td>
<td>0.01</td>
<td>0.44</td>
<td>0.79</td>
<td>2.67</td>
</tr>
<tr>
<td>0.30</td>
<td>8.70</td>
<td>35.9</td>
<td>0.05</td>
<td>1.45</td>
<td>2.24</td>
<td>2.45</td>
</tr>
<tr>
<td>0.30</td>
<td>12.6</td>
<td>48.5</td>
<td>0.02</td>
<td>0.84</td>
<td>3.08</td>
<td>1.81</td>
</tr>
<tr>
<td>WPNK = 0.32</td>
<td>WPrH = 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sayısallaştırılan Özelliklerin Normalizasyonu
Normalizasyon, her bir özelliğin puan değerinin, puan derecesinin maksimumuna bölünmesidir. Örneğin; Rubifikasyon için toplam puan değeri 90’dr. Bu puan Rubifikasyonun maksimum değeri olan 190 puan değeriine bölünür. Maksimum değere bölünen her bir özellik için 0-1 arasında bir değer bulunur (Tablo 1). Başka bir deyişle, her bir özellik 0-1 arasında değişen bir ölçek içersinde normalize edilir.

Toprak Gelişim İndeksinin Hesaplanması
Her horizon için normalize edilmiş özelliklerin hepsi toplanır ve toplam özellik sayısına bölünür. Elde edilen sayı bir horizon indedir. Yanlış veya eksik veri, indekte kullanılan özellik sayısını bilindiğinden, indeks analizini etkilemeyecektir. Daha sonra horizon indeksi, horizon kalınlığı ile çarpılır ve toprak gelişiminin indeksi cm orani bulunur. En son adında profildeki bütün horizyonların indeks-cm’leri toplanır. Bu değer profil gelişim indeksidir ve profilin tamamının gelişim derecesini yansıtır (3).

Araştırma Bulguları
Toprak gelişim indeksleri
Toprak özelliklerinin gelişimi
Her iki araştırma alanında da yağışın yetersiz ve toprakların genç olması toprak özelliklerinin gelişimini sınırladığını önemi faktörlerdir. Bu nedenle de toprak özelliklerinin gelişimini ileri seviyellerde olması, dolayısıyla A horizonu dışında herhangi bir alt toprak tanımlama horizontu oluşmamıştır. Toprak gelişimini yansıtan rubifikasyon, melanizasyon, tekstür ve gibi özelliklerin gelişiminin yüksek olması, özelliklerin çoğumunun korelasyon katsaylarının düşük olması neden olmuştur.

Kelkit çayı terasları arasında rubifikasyon, melanizasyon ve nemli kıvam lineer, kuru kıvam ve pH ussel, toplam tekstür ve struktur logaritmik bir dağılm göstermektedir. pH değişikliği bütün özelliklerin gelişimi en genç terasdan yaşlı teraslara doğru artmaktadır, pH’da ise tam tersi bir ilişki görülmektedir (Şekil 1). Özelliklerin gelişimindeki artış oran sırası, rubifikasyon>toplam tekstür>nemli kıvam>struktur>kuru kıvam>melanizasyon>pH seklinde oluyor.
Yeşilrmak terasları arasında, rubifikasyon \((R^2 = 0.1657)\) önce azalan daha sonra artan polinomal, melanizasyon \((R^2 = 0.0195)\) azalan lineer, total tekstür \((R^2 = 0.1781)\), strüktür \((R^2 = 0.2563)\), kuru kivam \((R^2 = 0.6454)\) ve nemli kivam \((R^2 = 0.9216)\) artan lineer, pH ise azalan össel bir ilişki göstermektedir. Özelliklerin gelişimindeki artış oranı nemli kivam>kuru kivam>strüktür>total tekstür>pH>rubifikasyon>melanizasyon şeklindedir (Şekil 2).

Şekil 2. Yeşilrmak teras topraklarının ağırlıklı profil özellikleri gelişimi ile teraslar arasındaki ilişkiler

Toprak profil gelişimi

Kelkit çayı teras topraklarının ağırlıklı profil gelişim indeks değerleri genç terastan yaşlı teraslara doğru lineer olarak artmaktadır ve 0.13-0.33 index-cm arasında değişmektedir (Şekil 3). Derinliği az olan profilinlerin ağırlıklı profil gelişim indeksleri yüksek bulunmuştur. Bununla beraber farklı teras profilileri arasındaki genlik farklılıklarını birbirlerini dengelemediğinden, ağırlıklı profil gelişim indeksi genç terastan yaşlı teraslara giderekçe lineer olarak artmıştır. Terasların ağırlıklı profil gelişim indeksleri arasında yüksek bir korelasyon \((R^2 = 0.6228)\) vardır ve 0.01 düzeyinde önemli.
Şekil 3. Kelkit çayı teras topraklarının ağırlıklı profil gelişim indeksleri ve profil gelişim indeksleri ile teraslar arasındaki ilişkiler

Şekil 4. Yeşilrmak teras topraklarının ağırlıklı profil gelişim indeksleri ve profil gelişim indeksleri ile teraslar arasındaki ilişkiler

Kazova ve Niksar Ovasında Yeşilrmak ve Kelkit Çayı Teras Topraklarının Toprak Gelişim Oranları

K kelkit çayı teras topraklarında olduğu gibi, Yeşilrmak teras topraklarında da ağırlıklı profil gelişim indeks değerleri genel terastan yuvarla teraslarla doğru linear olarak artmaktadır ve 0,13-0,35 index-cm değerleri arasında değişmektedir (Şekil 3). Artan yaş ile toprak derinliği artırmış, buna karşılık ağırlıklı profil gelişim indeksinin artışı, eğrinin eğiminden de görüldüğü gibi, yüksek seviyelerde olmamıştır. Profil gelişim indeks linier olarak artmıştır. Profil gelişim indeksi eğrisinin eğimi faza bağlı değişiklik 7,51-51,6 index-cm arasında değişmektedir (Şekil 4). Artan toprak derinliği, profil gelişim indeksinde arttırmış ve ağırlıklı profil gelişim indeksine göre daha yüksek bir korelasyon katsayısı (R² = 0.5724) elde edilmiştir. Teraslar arasında profil gelişim indeksinin artışı oranı 0,01 seviyesinde önemlidir.

Sonuç ve Tartışmalar

Melanizasyon indeksleri genellikle artan yaş ile azalır (3, 6). Ancak bazı araştırmalar melanizasyonun artan yaş ile lineer olarak arttığını belirlemiştirler (17, 18). Bazıları yanıltıcı ve toprakların asılsızlığı melanizasyon değerlerini etkileyen organik maddenin yavaşasjonu humus ve humik asit gibi maddelerin tabiatını değiştirebilir (13, 16, 19) ve melanizasyon indeksleri değişicik artar veya azalır. Bu nedenlerden dolayı da çalışma alanlarında, organik madde miktarı ve organik maddenin mineralizasyonu etkileyen toprak nemi içeriği, buna bağlı olarak dalgalı redoksk koşullarını olmasının, bu özellikin artması veya azalmasına neden olabilir.

Total tekstür ve struktur artan yaş ile lineer veya logaritmik olarak artmıştır. Bu özellikler oransal olarak kuru ve nemli kranımındaki diğer özelliklere göre daha fazla artmıştır. Bu artış, genel terastan yuvarla teraslarla doğru artan kil miktarı, ince partikillere yüzeyde birikimi ve depozilere ayrılmışda dolaylı C horizyonlarının indeksinin birliği olmasından

Melanizasyon indeksleri genellikle artan yaş ile azalır (3, 6). Ancak bazı araştırmalar melanizasyonun artan yaş ile lineer olarak arttığını belirlemiştirler (17, 18). Bazıları yanıltıcı ve toprakların asılsızlığı melanizasyon değerlerini etkileyen organik maddenin yavaşasjonu humus ve humik asit gibi maddelerin tabiatını değiştirebilir (13, 16, 19) ve melanizasyon indeksleri değişicik artar veya azalır. Bu nedenlerden dolayı da çalışma alanlarında, organik madde miktarı ve organik maddenin mineralizasyonu etkileyen toprak nemi içeriği, buna bağlı olarak dalgalı redoksk koşullarını olmasının, bu özellikin artması veya azalmasına neden olabilir.

Total tekstür ve struktur artan yaş ile lineer veya logaritmik olarak artmıştır. Bu özellikler oransal olarak kuru ve nemli kranımındaki diğer özelliklere göre daha fazla artmıştır. Bu artış, genel terastan yuvarla teraslarla doğru artan kil miktarı, ince partikillere yüzeyde birikimi ve depozilere ayrılmışda dolaylı C horizyonlarının indeksinin birliği olmasından
kaynaklandığı söylenebilir. Bu konuda yapılan bazı çalışmalar bulunan sonuçları destekler niteliktedir. Busaca (10), indeks değerlerinin, alüvial toprakların C horizonlarında sıfır olmadığı, Reheis (18), Harden ve ark. (21) ve Taylor (17), bu özellikler, zamanna lineer veya logaritmik fonksiyonlar şeklinde artışı belirtirler.

1. Chronosequence’lerin yaşlarının kesin olarak belirli olmaması ve özellikle Niskar ovasında akıllı meydana gelen tektonik olaylar yüzeylerin ve dolayısıyla toprakların stabilitesini etkilediği olabilir.

2. Birçok özelliğin kombinasyonu olan indeks, topraklar benzer yaşa olması halinde bile benzer oranlarda gelişebilir veya gelişimeyebilir. Örneğin; rubifikasyon Yeşilrmak teras topraklarında dalgalanmalar gösterirken, pH her iki çalışma alanında da üstel fonksiyonlar halinde düştü.

3. Toprak profilinlerin derinliklerini ve horizont kalınlıklarını farklı olsa da profil gelişim indeks değerlerinde önemli farklılıklar sadece bulunuyor.

Profil indeksi, toprak oluş faktörlerinin benzer olduğu iki alan arasındaki küçük farklılıklar dahil olmak üzere bittinin farklılıkları çok açık olarak göstermiştir.

Ararınm sonuçlarına göre Harden (3)’ün metodu yerinde oluşmuş topraklar için daha başarılı olacaktır. Ancak alüvial topraklarının gelişimi oranları içinde bir fikir vermektedir. Alüvial toprakların oluşum ve gelişim derecelerinin belirlenmesi oldukça zor olmasına rağmen, Harden (3)’ün Toprak Gelişim İndeksi metodu bu toprakların oluşum ve gelişim derecelerini açıkca ortaya koymaktar.

Kaynaklar